
Dance generation using Machine Learning

Abstract

Innovations in the field of generative machine learning
have opened up many doors to build and refine many
complex models that help us input a large corpus of
data and generate similar data based on the given
corpora. These generative models have allowed us to
input various types of data such as music, text, dance,
speech among other things and output data similar to
the input. In this paper we speak specifically about
dance moves corresponding to an Indian style of
dancing Bharatanatyam. We first extract the human
skeleton from dance videos to encode the data for
machine learning and then feed it to different
generation models to obtain similar Bharatanatyam
steps. The various approaches we take are Deep
artificial neural networks, autoencoders and Recurrent
neural networks. Our final model is based on Andrej
Karpathy’s char-rnn which when given large amounts
of textual data, generates sentences similar to the
corpus of data using recurrent neural networks. We
also take a small glimpse of audio encoding and
building a neural network to correlation audio vector
and dance position, but most of this is still work in
progress. This model can provide inspiration to a
choreographer and become the foundation to various
entertainment systems. The three generative models
and their performances are compared here to settle
finally on the RNN model which gives satisfied
results. This model can be altered to provide different
types of data such as a fighter's moves and strategies to
generate new ones.

Introduction

Bharatanatyam is an Indian Classical Dance form that
originated in Tamil Nadu. The basic theme of
Bharatanatyam revolves around religious themes,
spiritual ideas and folklore. Bharatanatyam is noted for
its fixed upper torso, bent legs or knee flexed out
combined with intricate footwork and a sophisticated
vocabulary of sign language based on gesture of hand,
eye and face.
Basic Terms:
1. Thala - The underlying beat example - Dhruva
Thala, Matya Thala, Rupaka Thala, Jhapme Thala,
Triputa Thala, Atta Thala and Eka Thala
2. Laya - Speed or tempo of the music - Vilambit,
Maddhya, Drut

3. Adavu - Steps or sequence of steps that are done in
synchronization with sollu kattu (bol). There are sets
of similar steps that are learnt as the basic building
blocks of every dance performance. Example - Tattu,
Mettu, Teermana etc.
Bharatanatyam consists of three dance types:
1. Nritya: Rhythmic with high dependency on Thala
and Laya. The Nritta performance is an abstract, fast
and rhythmic aspect of the dance. The viewer is
presented with pure movement in Bharatanatyam,
wherein the emphasis is the beauty in motion, form,
speed, range and pattern. This part of the repertoire has
no interpretative aspect, no telling of story. It is a
technical performance, and aims to engage the senses
(prakriti) of the audience. These are the dance types
that we focus on and use in this project.
2. Nritya: Combination of rhythm and expression and
conveys poetic meaning with the help of expressions,
rhythmic gaits and postures. The Nritya is a slower and
expressive aspect of the dance that attempts to
communicate feelings, storyline particularly with
spiritual themes in Hindu dance traditions. In a nritya,
the dance-acting expands to include silent expression
of words through gestures and body motion set to
musical notes. The actor articulates a legend or a
spiritual message. This part of a Bharatanatyam
repertoire is more than sensory enjoyment, it aims to
engage the emotions and mind of the viewer.
3. Natya: Has more dramatic elements and expressions
and rasa. The Natyam is a play, typically a team
performance, but can be acted out by a solo performer
where the dancer uses certain standardized body
movements to indicate a new character in the
underlying story. A Natya incorporates the elements of
a Nritya.
The basic and most common signature posture of
Bharatanatyam is the Ardhamandala/ Aramandala
which is a half sitting posture. The arms are also
positioned in a particular manner such that the entire
body can be divided into triangles. Bharatanatyam also
uses a very concise set of hand gestures to go with
every movement. A very basic way to describe
movements in Bharatanatyam would be a

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Fig 1.1 Above is the architecture for human pose detection.
Here C corresponds to convolution later and P represents the
pooling layer. The image is annotated with dimensions of
each layer for corresponding stages and time steps

move for every thaala. The entire dance form is based
on the sollu-kottu behind the adavus that make up the
dance.

Motivation

As Bharatanatyam has a comparatively fixed posture
as compared to other dance forms, it makes learning
the human form easier. Furthermore, as in every dance
posture in this form, the body is divided into a set of
triangles and diamonds, the geometric cohesiveness
allows the system to generate effectively. The angular
posture also makes sure that all the skeletal points of
the body are capable of being represented along a
simple plane.
Bharatanatyam is performed to Carnatic music and the
dance is often based on stories of people from Hindu
Religious Texts. This assures fluidity and continuity in
the movements of the dancer i.e. the dancer does not
make very abrupt moves. The recording of transition
from one posture to another can be done well.
Therefore, a low frame rate can also capture the
essence of the dance very well.
Lastly, Bharatanatyam is nothing if not a beat-based
dance. There is a strong correlation between the beats
and the steps. Almost every bol in the sollu-kottu is
assured a step. Hence, there is constant change with
good relation to music. Because all the steps are built
on the basic blocks established by the adavus, the
generative model has a good lay of the land when it
comes to the data, meaning, the dataset is a very good
reflection of the real-world conditions when it comes
to Bharatanatyam.

Literature survey

The literature survey consisted of looking through
various papers mainly Andrej Karpathy’s char-rnn

which input a large corpus of data and outputs data
similar to the input. Various papers were read to build
a parallel model that inputs dance position in some
format. Papers for human pose detection were looked
through to build an encoding of dance position from a
frame from a video to an encoding suitable for neural
networks. In specific ‘OpenPose: Realtime
Multi-Person 2D Pose Estimation using Part Affinity
Fields by Zhe Cao, Student Member, IEEE, Gines
Hidalgo, Student Member, IEEE, Tomas Simon,
Shih-En Wei, and Yasser Sheikh’ [2]. Several other
models such as autoencoders and Deep convolutional
networks were looked through and implemented to get
best results. The best results were obtained from the
Open pose implementation of human pose estimation.
The paper Art to Smart: An Automated Bharatanatyam
Dance Choreography was surveyed to understand the
basics of Bharatanatyam dance steps and its
vectorization. The basics of various models such as
Andrej Karpathy’s char-rnn implementation was
surveyed to study the working of plain rnn and its use
in language modeling. Similar concepts were applied
in human skeleton movement modeling.

Dance position encoding
Among various ways the dance position encoded. The
most accurate way of encoding the dance position was
to extract the solo human pose estimation of the image.
Videos of Bharatanatyam solo dancers edited to crop
out unnecessary frames not containing the dancer were
taken. The videos were merged to form one long dance
video. The whole video was processed frame by frame
to extract a large set of images defined by the frame
rate. The image was individually assessed and fed to
the human pose estimation model. The architecture of
this model and its parameters are provided in Fig 1.1.

The architecture can be segmented into three stages.
The first stage consists of 10 layers VGGNet[4], the
state-of-the-art model for image captioning to extract
features from the input image. The second stage splits
the model into two branches where the first branch will
predict 2D positions of the human body parts and
forms the confidence maps for them and the second
branch builds an affinity map that tells the affinity of
various body parts detected. The third stage the
confidence and affinity maps are parsed using greedy
inferencing to form the skeletal joint structure of the
human in the input image. The image points are plotted
on the image and the joining can be done according to
the indices provided by the affinity maps of
corresponding body parts to get the human pose
skeleton. The output of this model from input image
1.2 (a) is shown in 1.2 (b). Transfer learning is

incorporated to use pretrained weights for image
captioning training of the dataset MSCOCO.

(a) (b)

Fig 1.2 (a) Input image (b) Output joint tagged image

The input is provided to a CNN to jointly predict
confidence maps for body part detection parts
association. The parsing step performs a set of bipartite
matchings to associate body parts predicted. The
components are then finally combined to form the
human skeleton for the given image. The output of
each frame input consists of a vector containing the
positions of the joints of the human skeleton. Each
joint consists of a list of x-coordinate, y-coordinate and
confidence of that joint. An example output for input
frame Fig 1.2 is shown in Fig 1.3. Each list in the input
corresponds to a joint in the skeleton. The indices of
the lists are mapped to human body joints which are
stored in a dictionary to create edges as and when
necessary.

The mappings are as follows: Nose – 0, Neck – 1,
Right Shoulder – 2, Right Elbow –
3,RightWrist–4,Left Shoulder – 5, Left Elbow – 6, Left
Wrist–7, Right Hip–8, Right Knee – 9, Right Ankle
–10, Left Hip–11, Left Knee–12, L Ankle – 13, Right
Eye –14, Left Eye–15, Right Ear–16, Left Ear–17,
Background – 18.

The feature vector per frame is now ready to be input
to various machine learning models to generate new
dance position vectors similar to these. The affinity
maps are then used to reconstruct the skeletal structure
given the output generated vector. Some joints with
low prediction probability may be left and directly
joined to predecessors to avoid abnormal non-human
representing skeletons.

Fig 2.1 The CBOW architecture for language modeling.

Fig 2.2 model summary of deep neural network

Deep Neural Networks for Generation
Deep neural networks are neural networks with a large
number of hidden layers and can capture huge amounts
of complexity. They can capture complex nonlinear
relations among input. However, each input is
considered as an individual input and there is no
connectivity among the sequences of the inputs. Deep
neural networks given the context of a word can
predict the next word or word most related to the given
input context. This is related to the cbow neural model
[3] for language modeling’s architecture of the
COBOW model incorporated is shown in Fig 2.1. This
model is enhanced to provide deeper layers to form a
deep neural network so it can represent complex
functions/ here we replace words with our encoded
dance position vectors where the vectors of the
previous dance positions are provided to predict the
next dance step.

Here we transform our input vectors to another list of
vectors appropriate to create context of dance vectors
to generate the next dance vector. We take a lookback
of 25 to create a vector of vectors consisting of 25
sequential dance vectors. This dance vector’s output
corresponds to the next dance vector is the 26th dance
vector in the sequence. This is done sequentially to get
a dance context vector for each dance vector in our

corpus. Our corpus consists of 4500 dance vectors.
After transformation and padding we get 4500 training
dance context vectors and their corresponding outputs.
These vectors are also normalized and shifted about
the mean to center the vectors and get vectors apt for
our deep learning model. The equations for
normalization are as follows:

X -= np.amin(X, axis=(0, 1))

X /= np.amax(X, axis=(0, 1))

Here X is the training vector and the vectors are
normalized between 0 and 1 centered about their

Fig 2.3 Sample output vector for a random input from
training data

means to get a uniform distribution of dance vectors.

The model summary is given in Fig 2.2. The training
vectors are provided to the deep neural networks.
Various parameters are tuned to get optimum accuracy
for the model. Various features of the model like loss
functions, optimizers, decay rate, learning rate and
dropout layers are tweaked to get optimal results. Table
summarizes the results for some of the chosen
parameters. While testing the context vectors are built
by appending the newly generated output vector to the
next training context dance vector.

The results of this model are quite poor and despite
tweaking various parameters the model is only able to
predict with an accuracy of 18.2%. The model is not
able to detect or generate the human shape
corresponding to the inputs provided. The model is
also not able to generate appropriate dance steps with
continuity in motion. Fig 2.3 shows a sample output
for an input context vector. The data points are
concentrated in a region but do not form a human
form. The model is not able to capture the human
form. The main reason for this can be the following.

The size of the dataset we have taken is extremely
small and is not enough to train the deep neural
network model we have built. Enormous amounts of

data need to be fed for the model to even start
recognizing a human form let alone a dance position.
This model is not recommended for small corpus. The
training times of this model are also very large. To
train our dataset, the model took about 6.5 hours for
200 epochs. The loss function over epochs is shown in
Fig 2.4, as we can see after the initial drop, the loss
drops very slowly and requires a huge number of
epochs to even reach an accuracy of 18%.

Another reason for the poor performance of deep
neural networks to form continuous motions may be
because of loss of connectivity among training data.
Neural networks consider each training example as
independent training example and there may be a loss
of connectivity when erroneous inputs are considered

Fig 2.4 graph of loss function

in the context and the model may be severely misled as
we are appending the output subsequently to predict
the next step. This provides an ability to diverge from
the learned target function to diverge step by step to
produce erroneous outputs accumulated over time to
completely form a wrong context vector for testing in
the xth step.

Fig 3.1 General autoencoder architecture.

Autoencoders
Autoencoders are neural networks that use two neural
networks where one is the mirror of the other [5].
General architecture of an autoencoder is shown in Fig

3.1. The output of one network is the input to the
second network which is concatenated to the first. The
first neural network is called the encoder which takes
the input and compresses it to a lower dimensional
latent space. In our case we will take our original input
dance vector and feed it to our encoder decoder
network. The encoder takes this dance vector and
encodes it to a hidden representation. The decoder
takes this hidden representation as an input and tries to
reconstruct output similar to the input. However latent
variables z is parameterized by a generative network.
This produces a variation which results in slightest
different generative outputs which aren’t exactly like
the inputs.

The architecture of our model is summarized in Fig
3.2. Like our previous approach each input vector
consists of the compressed version of context dance
vectors. We keep a stack of predictions which grows
over time as outputs are seen. The outputs are stacked
on top for each step. The context vector then includes
the top look back number of vectors to compress and
form the next input. The dance vectors are encoded by
the encoder network. The encoder network uses dense
layers with LeakyReLU activations. The decoder then
takes this embedding and tries to reconstruct input to
get the dance vector with variation. The decoder
network is a mirror image of the encoder with slight
variations. It also uses a LeakyReLU activation
function and dense layer for the decoding task.

Fig 3.3 shows losses for different epoch checkpoints.

The model is then trained over the training examples
for 10000 epochs and the loss function varies with
epochs as shown in Fig 3.3. We can see that the loss
values are very jumpy and stabilize as the number of
epochs increase.

Results
The output of the model represents some form of
human shape and dance position. The model learns the
relationship between input and output human forms

and learns to produce output vectors that resemble
human form. Fig 3.4 shows an output of the input
frame during testing.

Even though the auto encoder learns to represent the
human form output dance vector, the subsequent dance
vectors have no relations among them. The auto
encoder doesn’t learn how to connect dance vectors to
produce smooth continuous flow. The output video is
dodgy and repetitive.

This may mainly be because the model doesn’t
consider connectivity among training examples and
only learns how to reconstruct input vectors with
variations. The connectivity among sequences is not
established as the autoencoder considers the training
examples as independent and doesn’t remember the
state of the context. As a new training example is seen,
the current state is lost and hence nothing held in
memory to connect to the next dance vector.

(a) (b)

Fig 3.4 (a) Output dance vector (b) Vector values connected
by edges using affinity map

Fig 4.1 Architecture of RNN LSTM network

Fig 4.2 Output of sample frame

Recurrent neural networks
Recurrent neural networks are architectures used to get
state of the art results for time series of various types.
The various types include stock market predictions,
speech recognition, language models, speech
translations, music encoding etc. They are the only
networks with internal memory and are able to capture
dependencies in a sequence of related inputs. In

Fig 4.3 Structure of an LSTM memory cell

recurrent neural networks the information cycles in
loops within the network to make future predictions
based on previous data and current input. This is the
most important property because the sequence of data
contains crucial information about what is coming
next, which is why an RNN can do things other
algorithms can’t. This architecture seems very apt for
our task as we will require architectures that relate the
previous dance vector to the current dance vector
which is the input to provide the next dance vector
which will continue the previous and current dance
vector to perform smooth dance movements. Since we
are dealing with complex data with multidimensional
inputs as the dance vectors, we will require a deep
RNN to try and predict a dance vector. Even though
practically RNNs must hold all information related to
all previous inputs, they only hold short term memory
due to vanishing gradient problems. They are not able
to capture long term dependencies. In dance videos
especially of Bharatanatyam the dances usually tend to
enclose a concept or story within them. These concepts
may not be directly closely placed within the video;
hence the network must learn the long-term
dependencies and expression and concept of the

overall dance video to produce continuing dance steps
that follow the same.

To solve this problem, we use LSTM cells which stand
for long short-term memory that allows the network to
selectively store important information along the
previous inputs. It solved the RNNs vanishing and
exploding gradient problem. It enables the network to
capture long term memories. ‘LSTMs are stable over
long training runs and can be stacked to form deeper
networks without loss of stability’. The LSTM controls
the signal flow through the hidden memory state to
ensure only important information is captured and the
unnecessary information forgotten based on input
vectors. An LSTM has three gates that enable it to
read, write and forget information from its memory the
assigning of the importance of the hidden information
also happens through the algorithms based on the
nature of previous inputs and outputs during training.

The three gates are input gate, output gate and the
forget gate. Figure 4.3 showcases an LSTM cell. The
LSTM cell will help our network to capture long term
dependencies among dance position vectors enabling it
to capture concepts of dance and expression.

Training
The input vectors of our initial corpus are modified in
the same way we had modified it for autoencoders and
deep neural networks. The lookback is specified to
form the context dance vector and normalized to center
the vectors about mean and form values between 1 and
0. To help build the required model the LSTM class is
imported from
https://github.com/cpmpercussion/keras-mdn-layer . The
class is instantiated and initiated with

Fig 4.4 Loss over last 10 epochs

appropriate values to train our network. The training
data is then fed to the network and trained over 20
epochs to reduce the loss. The performance over the
last 10 epochs is shown in Fig 4.4.

RNNs even with LSTMs still sometimes give
exploding gradient problems leading to the loss
function turning into Nan. To solve this, we do
gradient clipping and reduce the batch size to get 20

https://github.com/cpmpercussion/keras-mdn-layer

epochs of proper reduction of loss. Various parameters
are tweaked to get optimum results such as changing
the loss function and optimizers. Generally, it can be
shown using a mean square error metric, the output
will stagnate and converge to an average output in a
significant number of epochs. The network is trained
for 20 epochs which takes about one hour. Each batch
size is kept minimally to 2 to avoid exploding
gradients which goes through 498 training examples to
update the weights according to stochastic gradient
descent.

The outputs of the network are stacked and provided to
the network to generate smooth short dance moves.
The output dance vectors are connected using affinity
maps built earlier to form the stick figure as given in
Fig. 4.2. Additional libraries are used to demonstrate
the dance moves. These libraries include matplotlib
python libraries and their 3d axes modules and
animation modules.

Results
It is seen that when trained over one long dance video
of 20 minutes containing 498 frames or input dance
vectors the networks learn the human form as well as
short sequences of dance steps of continuous
movements. An example output for the input frame is
provided in figure 4.2. Our small network with small
training data is only able to produce small relevant
Bharatanatyam steps ranging over 2 or 3 seconds due
to limited resources. Most of the output dance steps are
based around the most general dance step in
Bharatanatyam shown in Fig 4.5. The dance moves are
small dance moves that are frequently performed in the
video with some variation.

Future work
Better training with more resources: Due to limited
computational resources and complexity of extraction
of human poses we were only able to train our model
with limited resources. The model performs the
required task for a small dataset and can perform much
more complex dance steps, encoding long dependency
concepts given enough training data and computational
power.

Audio synchronization: We intend to encode audio of
the training video to match the beats of the audio with
the dance vectors of the video. We would need to
match the frame rate of the video human posture
encoding with the sample rate of the audio encoding to
produce training vectors. The audio vectors and the
dance posture vectors need to be encoded to form the
final training vector to be fed to the recurrent neural
network with LSTM cells. This will help produce
dance vectors appropriate to the music given. More

complex network architecture may be needed to
accommodate this multi feature multidimensional
input vector to predict the output dance vector for the
given beat of the audio.

Multiperson dance choreography: The project can be
extended to extract multiple people and their dance
vectors. The synchronized dance steps of a group of
dancers can be learned along with their interaction.
This would require a very large corpus of data and
computational resources to train but has a lot of scope
as it can be used not only to choreograph dance moves
but also fighting sequences and motions of humans for
strategic wrestling etc.

Conclusions
The given task is a very complex task of generating a
dance sequence given a plethora of training corpus.
The system needs to learn to generate smooth dance

moves in parallel to capturing the concept exhibited by
the dance. It involved multiple dimensions and

relations among input vectors. This task requires a
very high amount of computational resources and

training data to even exhibit decent dance steps. Three
models were tested to generate such a dance sequence.

The deep neural network given the context dance
vector was neither able to represent the human form

nor able to generate a dance sequence. Despite a long
training time and tweaking of parameters the output
dance vector was arbitrary and sparse motion. The
second approach was to use an auto encoder which
was only able to represent the human form but not

generate smooth dance steps. This was mainly because
it didn’t have the power to connect the dance steps and

only tried to regenerate the input dance vector. The

third

Fig 4.5 Basic posture of Bharatanatyam

and last approach used recurrent neural networks that

connected dance vectors and had LSTM cells to
capture long term dependencies. This model was able
to capture the human form as well as produce small
sequences of dance with smooth continuous motion
relevant to the input dance vectors. We can conclude
that given much more training data and higher

complexity of the model the network can generate
complex steps and capture the concept of the dance.

REFERENCES

[1] OpenPose: Realtime Multi-Person 2D Pose Estimation using Part
Affinity Fields Zhe Cao, Student Member, IEEE, Gines Hidalgo,
Student Member, IEEE, Tomas Simon, Shih-En Wei, and Yaser
Sheikh

[2] Jadhav, Sangeeta & Joshi, Manish & pawar, jyoti. (2015). Art to SMart:
An Automated BharataNatyam Dance Choreography. Applied
Artificial Intelligence. 29. 10.1080/08839514.2015.993557

[3] Two Improved Continuous Bag-of-Word Models Qi Wang, Jungang Xu,
Hong Chen, Ben He School of Computer and Control Engineering
University of Chinese Academy

[4] S. Liu and W. Deng, "Very deep convolutional neural network based
image classification using small training sample size," 2015 3rd IAPR

Asian Conference on Pattern Recognition (ACPR), Kuala Lumpur,
2015,pp730-734.10.1109/ACPR.2015.7486599
keywords: {image classification;neural nets;image
classification;Krizhevsky;imagenet large scale visual recognition
challenge;deep convolutional neural networks;D-CNNs;ImageNet
datasets;CIFAR-10;VGG-16 network;batch
normalization;Convolution;Training;Error analysis;Computational
modeling;Neural networks;Acceleration;Data models},
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7486
599&isnumber=7486438

[5] B. O. Ayinde and J. M. Zurada, "Deep Learning of Constrained
Autoencoders for Enhanced Understanding of Data," in IEEE
Transactions on Neural Networks and Learning Systems, vol. 29, no.
9, pp. 3969-3979, Sept. 2018.
doi: 10.1109/TNNLS.2017.2747861
keywords: {Computer architecture;Feature
extraction;Encoding;Training;Decoding;Data mining;Data
models;Deep learning (DL);part-based representation;receptive
field;sparse autoencoder (SAE);white-box model},

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7486599&isnumber=7486438
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7486599&isnumber=7486438

